VECTOR ALGEBRA

Types Of Vectors

- Zero Vector: A vector whose initial and terminal points coincide, It has zero magnitude.
- 2. Unit Vector: A vector whose magnitude is unity. The unit vector in the direction of \vec{a} is denoted as \hat{a} .
- **3. Coinitial Vectors :** Two or more vectors having the same initial point.
- **4. Collinear Vectors:** Two or more vectors are collinear, if they are parallel to the same line irrespective of their magnitude.
- **5. Equal Vectors:** Two vectors are said to be equal, if they have same magnitude & direction regardless of the position of their initial points.
- **6. Negative of a vector:** A vector whose magnitude is the same as that of the given vector, but the direction is opposite to that of it.
- **7. Position Vector:** Let O be the origin & P(X,Y,Z) be a point with respect to the origin O. Then the vector called the position vector of the point P with respect to O. \overline{op} is

$$|\overrightarrow{OP}| = \sqrt{x^2 + y^2 + z^2}$$

- Direction angles: The angles made by \overline{OP} with positive direction of x, y, & z-axes (say $\alpha,\,\beta$ & γ respectively).
- Directions cosines: the cosine value of these angles i.e., $\cos\alpha$, $\cos\beta$ & $\cos\gamma$ of \overrightarrow{OP} denoted by I, m & n respectively.

Properties of Vector Addition

- (i) For any two vectors \vec{a} & \vec{b} , $\vec{a} + \vec{b} = \vec{b} + \vec{a}$ (commutative property)
- (ii) For any three vectors $\vec{a}, \vec{b}, \& \vec{c} (\vec{a} + \vec{b}) + \vec{c} = \vec{a} + (\vec{b} + \vec{c})$ (Associative property)

Multiplication Of A Vector By A Scalar

if \vec{a} is multiplied by scalar m then the product $m\vec{a}$ is a vector whose magnitude is |m| times that of $\vec{a}d$ & direction is same as \vec{a} if m is positive where as opposite to that of \vec{a} if m is negative.

$$\bullet m(\vec{a}) = (\vec{a})m$$

•
$$(m+n)\vec{a} = m\vec{a} + n\vec{a}$$

$$\bullet m(n\vec{a}) = n(m\vec{a}) = (mn)\vec{a}$$

•
$$m(\vec{a} + \vec{b}) = m\vec{a} + m\vec{b}$$
.

Dot or Scalar Product of Vectors

Dot product of two vectors \vec{a} & \vec{b} inclined at an angle θ is $(\vec{a} \cdot \vec{b}) = |\vec{a}| |\vec{b}| \cos \theta$

- $\vec{a} \cdot \vec{b} \in R$
- $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a}$
- $(x\vec{a}) \cdot \vec{b} = x(\vec{a} \cdot \vec{b}) = \vec{a} \cdot (x\vec{b})$
- $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$
- . If \vec{a} & \vec{b} perpendicular, $\vec{a}\cdot\vec{b}=0$
- . $\vec{a}\cdot\vec{b}<0$ iff angle between $\vec{a}~\&~\vec{b}$ is obtuse.
- $\hat{i} \cdot \hat{i} = 1$, $\hat{j} \cdot \hat{j} = 1$, $\hat{k} \cdot \hat{k} = 1$, $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{i} \cdot \hat{k} = 0$
- . If two vectors have same direction then $\cos\theta=1\Rightarrow\vec{a}\cdot\vec{b}=ab$
- If two vectors have opposite direction then $\cos\theta = -1 \Rightarrow \vec{a} \cdot \vec{b} = -ab$
- If \hat{a} & \hat{b} are unit vectors, $\hat{a} \cdot \hat{b} = \cos \theta$
- $\vec{a} = a_1\hat{i} + b_1\hat{j} + c_1\hat{k}$, $\vec{b} = b_1\hat{i} + b_2\hat{j} + b_3\hat{k}$ $\vec{a} \cdot \vec{b} = a_1b_1 + b_1b_2 + c_1b_3$.
- Projection of a vector \vec{b} on the other vector \vec{a} is given by $\vec{b} \cdot \hat{a}$ or $\vec{b} \bigg[\frac{\vec{a}}{|\vec{a}|} \bigg]$
- A vector in the direction of the bisector of the angle between the two rectors $\vec{a} \ \& \ \vec{b}$ is $\frac{\vec{a}}{|\vec{a}|} + \frac{\vec{b}}{|\vec{b}|}$
- Bisector of the interior angle between two vectors $\vec{a} \& \vec{b}$ is $\lambda \left(\frac{\vec{a}}{a} + \frac{\vec{b}}{b} \right)$ i.e., $\lambda (\hat{a} + \hat{b})$ where $\lambda \in R^+ \&$ Bisector of the interior angle is $\lambda \left(\frac{\vec{a}}{a} \frac{\vec{b}}{b} \right)$, is $\lambda (\hat{a} \hat{b})$

Cross product

Let $\vec{a} \ \& \ \vec{b}$ be two non-zero vectors inclined at an angle θ . Then, vector product is defined as $\vec{a} \times \vec{b} = |\vec{a}| |\vec{b}| \sin\theta \hat{n}$ where, \hat{n} is a unit vector perpendicular to both vectors $\vec{a} \ \& \ \vec{b}$ such that $\vec{a}, \vec{b} \ \& \ \hat{n}$ form a right handed system.

• Lagrange's Identity:

For any two vectors \vec{a},\vec{b}

$$(\vec{a} \times \vec{b})^2 = a^2 b^2 - (\vec{a} \cdot \vec{b})^2 = \begin{vmatrix} \vec{a} \cdot \vec{a} & \vec{a} \cdot \vec{b} \\ \vec{a} \cdot \vec{b} & \vec{b} \cdot \vec{b} \end{vmatrix}$$

• Formulation of vector product in terms of scalar product: The vector product $\vec{a} \times \vec{b}$ is the vector \vec{c} , such that

$$|\vec{c}| = \sqrt{|\vec{a}|^2 |\vec{b}|^2 - (\vec{a} \cdot \vec{b})^2}$$

- $\vec{c} \cdot \vec{a} = \vec{c} \cdot \vec{b} = 0$
- $\vec{a}, \vec{b}, \vec{c}$ form a right-handed system.
- Remarks
- (a) $\vec{a} \times \vec{b}$ is a vector.
- (b) If $\vec{a} \& \vec{b}$ are nonzero vectors, then $\vec{a} \times \vec{b} = 0 \Leftrightarrow \vec{a} \parallel \vec{b}$
- (c) For mutually perpendicular unit vectors \hat{i} , \hat{j} , \hat{k} ,
 - $\hat{\mathbf{i}} \times \hat{\mathbf{i}} = \hat{\mathbf{j}} \times \hat{\mathbf{j}} = \hat{\mathbf{k}} \times \hat{\mathbf{k}} = 0$
- (d) $\vec{a} \times \vec{b} = -\vec{b} \times \vec{a}$
- (e) If $\vec{a} \& \vec{b}$ represent the adjacent sides of a triangle then its area is $\frac{1}{2} |\vec{a} \times \vec{b}|$
- (f) If \vec{a} & \vec{b} represent the adjacent sides of a parallelogram then the area is $|\vec{a} \times \vec{b}|$
- (g) $\lambda (\vec{a} \times \vec{b}) = (\lambda \vec{a}) \times \vec{b} = \vec{a} \times (\lambda \vec{b})$
- (h) If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} & \vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$ then $|\vec{a} \times \vec{b}| = \begin{vmatrix} i & j & k \\ a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \end{vmatrix}$
- (i) Unit vector perpendicular to the plane of \vec{a} & \vec{b} is $\hat{n}=\pm\frac{\vec{a}\times\vec{b}}{|\vec{a}\times\vec{b}|}$
- Vector greg:
- If $\vec{a}, \vec{b} \& \vec{c}$ are the position vectors of 3 points then area of \triangle ABC = $\frac{1}{2} \left[\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right] A$, B, C are collinear iff $\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} = 0$.
- Area of any quadrilateral whose diagonal vectors are $d_1 \ \& \ d_2$ is given by $\frac{1}{2} \big| \vec{d}_1 \times \vec{d}_2 \big|$

Vector Triple Product:

Vector Triple Product of $\vec{a}, \vec{b}, \vec{c}$ is $\vec{a} \times (\vec{b} \times \vec{c})$. It is a vector perpendicular to the plane containing $\vec{a} \& \vec{b} \times \vec{c}$ lying in the plane of $\vec{b} \& \vec{c}$

$$\bullet \vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{a} \cdot \vec{b}) \vec{c}$$

•
$$(\vec{a} \times \vec{b}) \times \vec{c} = (\vec{a} \cdot \vec{c}) \vec{b} - (\vec{b} \cdot \vec{c}) \vec{a}$$

$$\bullet \left(\vec{a} \times \vec{b}\right) \times \vec{c} \neq \vec{a} \times \left(\vec{b} \times \vec{c}\right)$$

Test of Collinearity

 $x\vec{a} + y\vec{b} + z\vec{c} = 0[x, y, z \text{ scalars}, x + y + z = 0]$

Test of Coplanarity

 $x\vec{a} + y\vec{b} + z\vec{c} + w\vec{d} = 0$ [x, y, z, w scalars, x + y + z + w = 0]

Reciprocal system of Vectors

If $\vec{a}, \vec{b}, \vec{c}$ & $\vec{a}', \vec{b}', \vec{c}'$ are two sets of noncoplanar vectors such that $\vec{a} \cdot \vec{a} \cdot \vec{b} \cdot \vec{b}' = \vec{c} \cdot \vec{c}' = 1$ then the two systems are called reciprocal systems.

$$\overrightarrow{a'} = \frac{\overrightarrow{b} \times \overrightarrow{c}}{\left\lceil \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right\rceil}, \overrightarrow{b'} = \frac{\overrightarrow{c} \times \overrightarrow{a}}{\left\lceil \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right\rceil}, \overrightarrow{c'} = \frac{\overrightarrow{a} \times \overrightarrow{b}}{\left\lceil \overrightarrow{a} \overrightarrow{b} \overrightarrow{c} \right\rceil}$$

Scalar Triple Product/Box Product: $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$

Box product of $\vec{a}, \vec{b}, \vec{c}$ is $(\vec{a} \times \vec{b}) \cdot \vec{c} = abcsin\theta cos\phi$ $\theta \rightarrow angle$ between $\vec{a} & \vec{b}$ $\phi \rightarrow angle$ between $\vec{a} \times \vec{b}$ and \vec{c}

Box product geometrically represents the volume of the parallelopiped whose three coterminous edges are represented by $\bar{a}, \bar{b}, \bar{c}$

$$V = \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$$

•
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \cdot \vec{c}$$

•
$$\left[\vec{a}\,\vec{b}\,\vec{c}\right] = \left[\vec{b}\,\vec{c}\,\vec{a}\right] = \left[\vec{c}\,\vec{a}\,\vec{b}\right]$$

•
$$\vec{a} \cdot (\vec{b} \times \vec{c}) = -\vec{a} \cdot (\vec{c} \times \vec{b})$$
.

•
$$\left[\vec{a}\vec{b}\vec{c}\right] = -\left[\vec{a}\vec{c}\vec{b}\right]$$
.

• If
$$\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$$
, $\vec{b} = b_1 \hat{i} + b_2 \hat{j} + b_3 \hat{k}$,

$$\vec{c} = c_1 \hat{i} + c_2 \hat{j} + c_3 \hat{k} \text{ then } \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \begin{vmatrix} a_1 & a_2 & a_3 \\ b_1 & b_2 & b_3 \\ c_1 & c_2 & c_3 \end{vmatrix}$$

- \vec{a} , \vec{b} , \vec{c} are coplanar if $[\vec{a}\ \vec{b}\ \vec{c}] = 0$
- If $\vec{a}, \vec{b}, \vec{c}$ are non-coplanar, then $[\vec{a}\ \vec{b}\ \vec{c}] > 0$ for right handed system & $\begin{bmatrix} \vec{a}\ \vec{b}\ \vec{c} \end{bmatrix} < 0$ for left handed system.
- $[\hat{i} \hat{j} \hat{k}] = 1$
- $\begin{bmatrix} k \ \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = k \begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix}$
- $\left[(\vec{a} + \vec{b}) \ \vec{c} \ \vec{d} \right] = \left[\vec{a} \ \vec{c} \ \vec{d} \right] + \left[\vec{b} \ \vec{c} \ \vec{d} \right]$

Direction cosines & Direction Ratios

- If \vec{a} makes angles of α, β, γ with the direction of x, y, z axes, then $\cos\!\alpha, \cos\!\beta, \, \cos\!\gamma$ are called direction cosines which
 - \vec{a} is are usually denoted by I, m, n.
- Any three members a,b,c proportional to the direction cosines of a line are called direction ratios

$$\frac{1}{a} = \frac{m}{b} = \frac{n}{c}$$

$$1 = \pm \frac{a}{\sqrt{a^2 + b^2 + c^2}}; \quad m = \pm \frac{b}{\sqrt{a^2 + b^2 + c^2}}$$

$$n = \pm \frac{c}{\sqrt{a^2 + b^2 + c^2}} / 1^2 + m^2 + n^2 = 1$$

Vector Equation of a Line

- Parametric vector equation of a line passing through two points $A\left(\vec{a}\right)~\&~B\left(\vec{b}\right)~\text{is}~~\vec{r}=\vec{a}+t\left(\vec{b}-\vec{a}\right)$
 - If line passes through the point $A(\vec{a})$ & is parallel to
 - \vec{b} , then its equation is $\vec{\gamma} = \vec{a} + t\vec{b}$
 - Equation of the bisectors of the angle between the lines,

$$\vec{r} = \vec{a} + \lambda \vec{b} \; \& \; \vec{r} = \vec{a} + \mu \vec{c} \; \text{ is } \; \vec{r'} = \vec{a} + t \Big(\vec{b} + \vec{c} \Big) \; \& \; \vec{r} = \vec{a} + p \Big(\vec{c} - \vec{b} \Big)$$

Shortest distance between two lines

If two lines are $\vec{r}_i = \vec{a}_1 + k\vec{b} \ \& \ \vec{r}_2 = \vec{a}_2 + k\vec{b}$ then $\alpha = \left| \frac{\vec{b} \times \left(\vec{a}_2 - \vec{a}_1 \right)}{\left| \vec{b} \right|} \right|$

14

Equation of Plane

 $\left(\vec{r}-\vec{r}_0\right)\cdot\vec{n}=0$ containing the point with position vector \vec{r}_0 , where \vec{n} is a vector normal to the plane. $\vec{r}\cdot\vec{n}=d \text{ general equation}$

Projection & Component

- Projection of \vec{a} along $\vec{b} = \frac{\vec{a} \cdot \vec{b}}{\left|\vec{b}\right|}$
- Component of \vec{a} along $\vec{b} = \frac{\left(\vec{a} \cdot \vec{b}\right)\vec{b}}{|\vec{b}|^2}$
- Projection of $\vec{a} \perp \vec{b} = \frac{|\vec{a} \times \vec{b}|}{|\vec{b}|}$
- Component of $\vec{a} \perp \vec{b} = \vec{a} \frac{(\vec{a} \cdot \vec{b})\vec{b}}{|\vec{b}|^2}$

Component Of Vector

 $\overrightarrow{OA}, \overrightarrow{OB} \& \overrightarrow{OC}$ are unit vectors along x,y & z axes respectively, denoted by $\hat{i}, \hat{j} \& \hat{k}$ respectively Position Vector of with reference to O is given by:

$$\overrightarrow{OP}(\text{ or } \vec{r}) = x\hat{i} + y\hat{j} + z\hat{k}.$$

This form of any vector is called its component form.

Also,
$$(\overrightarrow{OP}) = |\vec{r}| = \sqrt{x^2 + y^2 + z^2}$$

Vector Joining Two Points

Let $A(x_1,y_1,z_1)$ & $B(x_2,y_2,z_2)$ be any two points in the space, then

$$\overrightarrow{OA} = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k} \& \overrightarrow{OB} = x_2 \hat{i} + y_2 \hat{j} + z_2 \hat{k}$$

18

Section Formulae

The position vector of a point R dividing a line segment joining the points points P & Q whose position vectors are

- $\vec{a} \ \& \ \vec{b} \ \ respectively,$ in the ratio m : n
- (i) internally, is given by $\frac{m\vec{b} + n\vec{a}}{m+n}$
- (ii) externally, is given by $\frac{m\vec{b} n\vec{a}}{m n}$

The position vector of the middle point of PQ is given by $\frac{1}{2}(\vec{a}+\vec{b})$

19

Scalar product of four vectors

$$(\vec{a} \times \vec{b}) \cdot (\vec{c} \times \vec{d}) = \begin{vmatrix} \vec{a} \cdot \vec{c} & \vec{b} \cdot \vec{c} \\ \vec{a} \cdot \vec{d} & \vec{b} \cdot \vec{d} \end{vmatrix}$$

Vector product of four vectors

$$(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) = [\vec{a} \vec{b} \vec{d}] \vec{c} - [\vec{a} \vec{b} \vec{c}] \vec{d}$$

