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VECTOR ALGEBRA

& . ©) Types Of Vectors

1. Zero Vector : A vector whose initial and terminal points

coincide, It has zero magnitude.

2. Unit Vector: A vector whose magnitude is unity. The unit vector

in the direction of @ is denoted asa.

3. Coinitial Vectors : Two or more vectors having the same initial point.
4. Collinear Vectors: Two or more vectors are collinear, if they are
parallel to the same line irrespective of their magnitude.

5. Equal Vectors: Two vectors are said to be equal, if they have same
magnitude & direction regardless of the position of their initial points.
6. Negative of a vector : A vector whose magnitude is the same as
that of the given vector, but the direction is opposite to that of it.

7. Position Vector: Let O be the origin & P(X,Y,Z) be a point with respect to
the origin O. Then the vector called the position vector of the point P
with respect to O. opis

|OP|=/x* +y* +7°
- Direction angles: The angles made by OP with positive direction of x, y, &
z-axes (sayo: B & ¥ respectively).
- Directions cosines: the cosine value of these angles i.e, cosa, cosp & cosy of
OP denoted by I, m & n respectively.

(©¢

N

Properties of Vector Addition
(i) For any two vectors 3 & b, 4+ b=b +a (commutative property)

(ii) For any three vectors @,b, & ¢ (a +b) +c =a + (b +c) (Associative property)

Multiplication Of A Vector By A Scalar

if a is multiplied by scalar m then the product ma is a vector
whose magnitude is |m|times that of ad & direction is same as
ajf mis positive where as opposite to that of a if m is negative.

.m(é') = (ﬁ)m

.m(né) :n(mﬁ):(mn)ﬁ

. (m+n)§:m5+n§

-m(5+f)):m5+ml;.

04

Dot or Scalar Product of Vectors

Dot product of two vectors @ & b inclined at an angle 6 is (é-f)) :|a\|5|cose
- d-beR

. If @ & b perpendicular, a-b=0

. i-b<0 iff angle between @ & p is obtuse.

cii=Ljj=L kk=1,1-j=jk=

k=0

[

. If two vectors have same direction then
cosO=1=d-b=ab

« If two vectors have opposite direction then
cosf=—1=a-b=-ab

« If 4 & b are unit vectors, a-b=cosd

cd=ai+bj+ck,b=bji+b,j+bk a-b=ab, +bb, +cb,.

« Projection of a vectorbon the other vector i is given by b-a or B[i]

4l

* A vector in the direction of the bisector of the angle

~.r-..a b
between the two rectorsa &b is ﬁJr ﬂ
al |b
« Bisector of the interior angle between two vectors
as&bis 7\,[3-%-%} i, 2.(a + bywhere L e R*& Bisector
a

ab

of the interior angle is}»[ b]' isA(a—b)
a

Get More Learning Materials Here : &

Letd@ & b be two non-zero vectors inclined at an angled
Then, vector product is defined as @x b =|4 || b |sin 64

where, fi Is d unit vector perpendicular to both vectors
d & bsuch that 4,b & i form a right handed system.

* Lagrange's Identity:
For any two vectorsa,b

S
@xb) =a’b’ @b’ =%
i

oo

>
ia-
b b

» Formulation of vector product in terms
of scalar product:The vector product
axb is the vector ¢, such that

g = /\a\z\mz —@-b)’
¢-a=¢b=0
d,b,&form a right-handed system.

* Remarks
(a) axb is a vector.

(b) If 4 & b are nonzero vectors, thendxb=0 <3| b

(¢) For mutually perpendicular unit vectorsf,]’,fc,
ixi:jxj:ﬁxﬁzo

(d) axb=-bxa

(e) If a & b represent the adjacent sides of a triangle then
its area is l|5 X B‘

2
® r3&b represent the adjacent sides of a

parallelogram then the area is ‘5 X B|

(g) M(axb)=(ra)xb=ax(2b)

s e A I RO
(h)ifa=aji+a,j+ak8& b=bi+b,j+bkthen|dixbl=la, a, a,
b b, b,
axb

(i) unit vector perpendicular to the plane ofa & b is h =+

« Vector area:

- If 4,b & ¢ are the position vectors of 3 points then area of A
ABC :E[é xb+bxé+Ex i]A, B, C are collinear iff
axb+bxc+cxa=0.

« Area of any quadrilateral whose diagonal vectors are d, & d,

is given by%‘al x('12|

Cross product )

A J

o8 ) Vector Triple Product:

Vector Triple Product of ,b,cisa x(B xE).
It is a vector perpendicular to the plane containing
a&bxclying in the plane of b & ¢

o Test of Collinearity
0 xd +yb+z¢=0[x y, z scalars, x +y + z = 0]

|
@ ® Test of Coplanarity

Xd+yb+ze+wd=0[x Y,z wscalars,x +y + z +w = 0]
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L) @) . Shortest distance between two lines
Reciprocal system of Vectors . ittt
. N If two lines qrel‘l:a1+kb&r2:a2+kb
If a,b,c & b ,c are two sets of noncoplanar vectors such that

bx(3,-4)

i,
¢'=

1then the two systems are called reciprocal systems. theno =
ixb | ‘
556] L) O Emm

Equation of Plane

(¥-7,)-fi=0 containing the point with position vector %, where i

Scalar Triple Product/Box Product:[ﬁ b E} is a vector normal to the plane.
T-n =dgeneral equation

ol
i1

¢ - xa .
b= ¢ =

T ]

ol

|

Box product of 4,b,¢ is (5 XB) -C = abcsinOcosd

0 —angle between a & b
angle betweenaxb and ¢ <::» . . h
dfﬁ ° ¢ ) Projection & Component
Box product geometrically represents the volume of the parallelopiped
whose three coterminous edges are represented by a,b,¢ - 3b S P\
- 7 « Projection of 4 along b=-— z = ( 'b)b
v [5 b E} ) a 9 |B| + Component of aalong p =~
SN (= = Ib[*
e a (bxc):(axb) c o o |5><B‘ (5 B)B
o * Projectionof a L b="— .ComponentofELE:E_
. [abc]:[bca]:[cab] b|
. J
« d-(bxe)=-a-(exb)
= = 16 -
- [abc]=—[ach]. Component Of Vector

« If d=aji+a,j+ak, b=bi+b,j+bsk,

. N R _ 4 3 a,
¢=ci+ej+ekthen[a b &]=lb, b, b,
€ C G

,b,¢ are coplanar if [a b ¢]=0 0OA,OB & OC are unit vectors along xy & z axes respectively, denoted by
i

. If 4,b,¢ are non-coplanar, then [@ b ] > 0 for right handed system j & k respectively Position Vector of with reference to O is given by:
[a b ¢ < O for left handed system. OB( or F) = xi + yj + 7k.

-lijki=1 This form of any vector is called its component form.

[k b ]=k[3 b ¢ AlSO, (OP) =/ F =™ +y* +2°
-[(5+B) ¢ a]:[a ¢ a]+[5 ¢ a] m
Vector Joining Two Points

\
@ Let A(x,.y;.z,) & B(x,.y,,2,) be any two points in the space, then
. . - . - - Y
Direction cosines & Direction Ratios OA=xi+y}+z,k 80B=xi+y,}+z,k
- If @ makes angles of a.,B,y with the direction of x, y, z axes, then . TBzﬁfﬁ:( _x )f+(y —y )j+(z —z )1;
b 1 2 1 2 1
cosa.s cosf, cosy are called direction cosines which —
Bﬂ, : ‘AB|:\/(X27X1)2+(Y2*Y1)2+(Zz721)2
a is are usually denoted by I, m, n. q
« Any three members a,b,c proportional to the direction cosines of
a line are called direction ratios 18
1 ' .
—= % =z Section Formulae
a ¢ The position vector of a point R dividing a line segment joining
=+ a et b the points points P & Q whose position vectors are
Var+b% +c? N eI a &b respectively, in the ratio m: n
n=+___°% Pamlanoi (i) internally, is given by mb +na
a’+b’+c? m+n
. J _
— o . . (i) externally, is given by dnl ]
Vector Equation of aline m-n
« Parametric vector equation of a line passing through two points The position vector of the middle point of PQ is given by%(i +B)
A(a) & B(b) is F=a+t(b-a)
« If line passes through the point A(3) & is parallel to
b, then its equation is 7 =4 + tb Scalar product of four vectors
« Equation of the bisectors of the angle between the lines, P
- -\ /-~ =\ l|a.c b.c
O U axb).(cxd)=____
T=d+Ab& T=d+pc is ¢ (b+c)& r—a+p(c b) ( a.d b.d
\
20

Vector product of four vectors

(axB)x(cxd)=[abd |c~[abc ]
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